
DCE-Based Applications

DII COE I&RTS: Rev 3.0 January 1997 8-1

8. DCE-Based Applications

The DII COE is designed to support applications using the distributed client/server
computing model. There are many ways to implement a distributed client/server
environment. The DII COE provides the Open Software Foundation’s (OSF) Distributed
Computing Environment (DCE) as a baseline for distributed architecture/standards. To be
DII-compliant, there is no requirement to use DCE as the baseline for a client/server
implementation, or that segments be client/server-based. However, if the application uses
RPCs (Remote Procedure Calls), they must be compatible with DCE RPCs.

DCE is an integrated set of services that support the development, use, and maintenance
of distributed applications. A set of written standards and a package of developer’s
software are available from the OSF.1 Based on these, a large number of applications have
been written by various software vendors for end users. Use of DCE is not restricted to
Unix environments. Clients or servers may operate on other operating systems, although
the most applications employ Microsoft Windows or Windows NT clients and Unix
servers.

The purpose of this chapter is to provide the minimum essential information necessary for
DCE COE and mission-application developers to begin developing DCE mission
applications. It is not a tutorial on DCE, nor does it provide an in-depth discussion of
development tools, management procedures, or compliance criteria (in the sense of DCE
standards). Developers using DCE should refer to OSF or vendor documentation for
general guidance on DCE.

The DII COE provides a COTS reference implementation of a DCE server and a DCE
client. Developers shall use these rather than providing their own copy of an alternative
COTS DCE product. This is required of all segment developers, including mission-
application developers, because the end COE-based system is likely to be installed on a
LAN that includes multiple COE-based systems.

                                               
1 DISA maintains a facility called the Operational Support Facility in the Washington, DC area.
Throughout this chapter, unless otherwise indicated, OSF refers to the Open Software Foundation and not
to DISA’s Operational Support Facility.



DCE Overview

January 1997 DII COE I&RTS: Rev 3.08-2

8.1 DCE Overview

OSF’s DCE is commercial software that provides a comprehensive set of services that
support the development, use, and maintenance of distributed applications. DCE allows
diverse systems to work together cooperatively and masks the technical complexities of
the network. Because DCE is independent of the operating system and network, it is
compatible with many diverse environments.

The strength and appeal of DCE stem from its ability to make a group of loosely
connected systems appear as a single system to Information Systems (IS) staff, end-users,
system administrators, and application developers. Applications executed under DCE take
advantage of untapped resources on networks by finding the platform best suited for a
particular job. Similarly, complex tasks can be easily split among multiple computers on
the network to reduce computing time and improve performance. From a security
perspective, users in a DCE-enabled computing network need only log in once for access
to all network platforms.

Many compare the OSF’s DCE to wiring or plumbing because it provides the underlying
transport layer that enables distributed client/server applications to interoperate across a
heterogeneous environment. DCE currently consists of the following services:

• Remote Procedure Calls (RPC)
• Cell Directory Service (CDS)
• Distributed Time Service (DTS)
• Distributed File Service (DFS)
• Security Service
• Threads.

8.1.1 Remote Procedure Call (RPC)

The key to making many disparate resources function logically as one system within DCE
is the RPC. In DCE, RPCs let multiple computers execute applications, or parts of
applications, on the platform chosen by the developer as best suited for the task.

The RPC makes a wide variety of application capabilities possible that were previously
either impossible or extremely difficult to implement. These capabilities include the
following:

1. allowing multiple clients (in a client/server network) to interact with multiple servers,
and multiple servers to handle multiple clients simultaneously,

 
2. the ability for clients, through DCE’s Directory Services, to identify and locate

network users by logical service name,
 
3. protocol independence across the network for any platform, and



DCE Overview

DII COE I&RTS: Rev 3.0 January 1997 8-3

 
4. secure communications across the network.

8.1.2 Cell Directory Services (CDS)

The DCE Cell Directory Service (CDS) provides a single naming model throughout a
distributed environment. Directory Services let users access network services, such as
printers, servers, and other network platforms, by name, without the necessity of knowing
where the resource is located within the network. This lets users access a network
resource even if the resource has been moved to a different physical network address.

The Cell Directory Service can make use of its built-in X.500 Global Directory Service
(GDS) for locating resources in external cells, or can make use of Domain Name Service
(DNS) for this purpose. Cell names are constructed differently depending on which
approach is selected.

• The DII COE will use DNS to locate external cells, and therefore will use DNS-style
cell names.

8.1.3 Distributed Time Service (DTS)

DCE DTS allows multiple platforms to work together to share information without timing
problems that might affect event scheduling and duration. DTS regulates system clocks on
each network computer so that they match each other. Clocks are synchronized, and the
service ignores faulty system clocks. The DCE Time Service uses authenticated DCE RPC
so that, unlike the Internet Network Time Protocol, the DCE global clock synchronization
is secure. Also, to support network sites that wish to use time values from outside
sources, DTS supports the Network Time Protocol standard. The DCE Time Service also
includes a published Time Provider Interface to allow it to receive inputs from other
reliable time sources, such as Global Positioning Satellite (GPS) or other military systems.

• DCE DTS provides intra-cell clock synchronization in the DII COE. Inter-cell
synchronization is not supported.

8.1.4 Distributed File Services (DFS)

The DCE DFS is a fundamental element for information sharing in DCE-enabled
networks. It is one of many facilities that could theoretically be built on the foundation
provided by DCE’s Core Services. DFS unites the file systems of all network nodes for a
consistent interface, making global file access as easy as local access. It replicates files and
directories on multiple network machines for fast and reliable access, even when
communication lines and network hardware fail. It also caches copies of currently used
files at the requesting node to minimize network traffic and provide fast data access.

• DFS is not provided as part of the DII COE. Specific communities may implement
DFS on top of the DII COE. Information in this chapter about DFS describes it as it is



DCE Overview

January 1997 DII COE I&RTS: Rev 3.08-4

planned to be used by the GCCS community. This may serve as a useful model for
other mission domains.

8.1.5 Security

While security maintenance and administration are simplified for one central system behind
a glass wall, security for dozens of computers scattered across a wide area network, all
operating as a single entity, is much more complicated. DCE’s Security Services ensures
distributed security. The Security Service software layer is made up of three parts:
authentication, authorization, and user registry. DCE facilitates these services through the
RPC, which maintains the integrity of information passed across the network.

The authorization mechanism grants authorized users access to resources and rejects
requests from unauthorized users. DCE implements Access Control Lists (ACL) based on
a draft Portable Operating System Interface for Unix (POSIX) standard that provides a
fine-grained object/operation security authorization model.

The user registry permits users to access multiple network resources through a single
password and single login. The registry is a single database of user information that is
replicated around the network. User passwords and security-related attributes are centrally
stored and universally available.

Many security features, including auditing, delegation, and a registry extension to support
non-Unix systems, are provided by DCE. Improved security is one of the primary
motivations for the movement to DCE for DII applications. OSF DCE provides the
following significant features related to security:

1. DCE Authentication provides a secure mechanism (unforgeable) for establishing
identity. A user should not be able to compromise the authentication process by using
a ‘root’ account on any machine to project Unix credentials.

 
2. Authorization for execution of applications is based on DCE credentials in addition to

Unix credentials. The granularity of execution control on a base Unix system is limited
to an owner/group/world model that is not sufficiently flexible. As a result, almost all
applications are set to enable world execute permission.

 
3. Authorization for operation invocation is based on DCE credentials. Most existing

applications either do not have granular access decisions or have implemented their
own means of access control. An example of the latter is a database server that may
define roles as a means of protecting classes of operations. New applications and those
being migrated should be provided with a consistent means of defining, managing, and
performing these operations.

 



DCE Overview

DII COE I&RTS: Rev 3.0 January 1997 8-5

4. DCE security allows a client to securely project its identity, including memberships, in
other security groups. This allows authorizations to be group-based rather than user-
based.

 
5. Single-login allows all related access decisions to be based on the same distributed

identity. Without this capability, users may be required to login to multiple systems or
applications, and security administrators must keep multiple identities and security files
in synchronization.

 
6. Execution auditing records DCE and Unix credentials. This records the identity of

anyone running an audited application (see below).
 
7. Protection against packet insertion/replay, packet interjection, and eavesdropping can

be achieved when using DCE RPCs at the appropriate security level or when using the
Generic Security Services API (GSSAPI) to protect data transmitted over the
network.

Note: For the near term, security for DII distributed applications will be
provided by the DCE Security Service, which is based on
Kerberos. The OSF and DOD are exploring ways to link DCE
security with DOD techniques such as MISSI. Other security
mechanisms may be provided in future versions of the DII COE
as the COE migrates from a software-based security solution to a
hardware-based solution.

8.1.6 Threads

The underlying Threads Service is used by several DCE services, including the RPC.
Threads are programs that use “lightweight” processes to perform many actions
concurrently. Threads are particularly useful in allowing server applications to process
multiple requests concurrently. DCE Threads are based on the POSIX threads standard.
OSF has designed the multi-threading capability of the Threads Service to be easily
accessible by programmers wishing to use it in applications. Most commercial applications
using threads are written in C, so these DCE services can be accessed through the C
programming language. Bindings exist for Ada, as well as other high-level programming
languages.

8.1.7 Client/Server Concepts

DCE is specifically designed to manage the distribution of processing across multiple
platforms. It is a powerful infrastructure for building client/server architectures. The
client/server computing model for DCE introduces a few additional terms.

1. In the DCE context, a server is a single executable program that provides services to
clients. An example of a server is a DBMS, or a map server that provides map images
to a calling application. A site can employ multiple servers to create a more available



DCE Overview

January 1997 DII COE I&RTS: Rev 3.08-6

or more balanced service environment. A DII segment can contain multiple servers
each performing some related service.

 
2. A server implements one or more services, each of which is offered through an

interface. Interfaces are well defined, using the DCE Interface Definition Language2

(IDL), and are the concrete descriptions of a service. Usually, a server implements at
least two interfaces. One provides the operational interface for client requests. The
other provides a management interface (e.g., for security). Internally, all DCE servers
implement other interfaces used for querying, stopping, or reconfiguring the server.

 
3. An interface provides access to one or more operations, each of which corresponds to

a specific function or procedure call. For example, a complex math interface could
provide separate operations for complex addition, subtraction, multiplication, and
division. The operations within an interface should be very closely related.

 
4. In DCE, clients locate appropriate services by using the DCE CDS to provide the

location of one or more servers. The client presents a CDS name (or listing) and
optionally, a resource element (object UUID). The CDS name corresponds with the
logical service name rather than a machine or hostname. This indirection allows DCE
to provide location independence and employ multiple compatible servers for
availability or load balancing.

 
5. Each operator using DCE is identified with a unique DCE principal. A DCE principal

has a DCE account maintaining its DCE identifier (UUID) along with its Unix identity
(uid, gid). A DCE principal will map uniquely to a Unix userid.

 
6. Each DCE server is also identified with a particular principal. For security reasons,

server principals should map to Unix userids that are not allowed to login (i.e., without
a login password). These Unix userids correspond to the concept of a “system
account” (like uucp).

 
7. Although it is not necessary for the client and server to be installed on separate

machines, one of the primary reasons for constructing client/server applications is to
share access to a one or more server resource among multiple clients. Since the
segment is the smallest installation unit, the client and server portions of an application
are usually delivered in separate segments.

                                               
2 The DCE IDL should not be confused with the CORBA IDL. Both are similar in concept, but differ in
implementation.



DII COE DCE Services

DII COE I&RTS: Rev 3.0 January 1997 8-7

8.2 DII COE DCE Services

The DII COE supplements the COTS DCE product with a number of tools to assist the
developer in creating segments that use DCE, and in installing and managing DCE at an
operational site. Commercial products are preferable, but many of the tools and features
required are not available commercially. The tools discussed in this section, and the DCE-
related tools described in Appendix C, are specifically designed for the DII COE rules for
DCE applications. In addition, development of DCE guidance for the COE highlighted
some issues/items that must be addressed in order to assist in the development of DCE
mission-application segments, and implementation of DCE in the COE.

8.2.1 Standard Server Installation

The first part of a DCE server installation process must run as root. Installation of the
DCE server has been standardized for the COE and is part of the DCE COE-component
segment. Installation uses a parameterized dcecp script to create an initial CDS entry and
principal for the segment, and give it permissions to create the rest of the structure.

8.2.2 Standard Server Initialization

A secure DCE server must make between 7 and 30 DCE calls on initialization, to establish
configuration information, security information, and register its presence to a CDS. The
COE provides a standard server initialization routine.

8.2.3 Standard Client Binding

DCE provides an “automatic” binding routine that will find a suitable server and make a
connection. However, this does not work for secure connections or the recommended
object model. The alternative requires the client to deal with CDS querying, security, and
the possibility of missing servers. The COE provides a standard client binding to allow
COE clients to make a single call and not have to deal with this level of complexity.

8.2.4 Standard Reference Monitor

Secure DCE servers must implement a Reference Monitor (RM) routine to verify the
client’s credentials against a server’s access control lists (ACL), and an ACL manager to
maintain application ACLs. For the DII COE, a standard RM and ACL manager are
provided as a library routine to every server developer so that security decisions are made
in a standard, certifiable manner. The OSF provides a boiler-plate RM, which has been
parameterized and “segmented” for use by DII applications.

8.2.5 DCE Verification

The VerifySeg tool includes verification of DCE application segments. Refer to
Chapter 5 for the appropriate segment descriptor entries, and to subsection 8.3.4 below
for a brief synopsis of the required segment descriptors. COE tools verify that a DCE



DII COE DCE Services

January 1997 DII COE I&RTS: Rev 3.08-8

segment has been properly installed, and that CDS entries meet the COE guidelines and
agree with the entries in the relevant DCE segment descriptor.

8.2.6 Template Application

Creating DCE segments can be difficult because of complexities within DCE itself. To aid
segment developers, the COE Developer’s Toolkit contains an example template
application. This application serves as a working model and template for developers of
other DII COE applications using DCE.



Runtime Environment

DII COE I&RTS: Rev 3.0 January 1997 8-9

8.3 Runtime Environment

Many of the security-related objects and concepts within the rest of the COE and Unix
have counterparts within DCE, although the DCE object often has more powerful features
and attributes. This section states requirements for the development of client/server
applications using DCE. The guidance provided shall be followed by all DII applications
using DCE, including applications that do not yet fully comply with the DII COE. Failure
to comply with this DCE guidance may result in operational conflicts between
applications.

This section begins with a description of the directory structure required for DCE
segments. The general structure for segments is described in Chapter 5, but it is useful to
collect the information into this section as an easy reference for relevant information.
Then, the conventions for CDS and DFS for the COE are described. A summary of
segment descriptors relevant to DCE are described and the remainder of this sections
gives specific information on COE conventions for DCE, organized by server and client.

8.3.1 Segment Directory Structure

DII segments are delivered in accordance with a fixed file/directory structure defined in
Chapter 5. Some DCE information is also delivered in Unix files. Other information, such
as CDS information, must be delivered as files and built in CDS as part of installation.

Figure 8-1 illustrates the DII COE directory structure for segments. The shaded portions
indicate the additional information required which is DCE-specific. Chapter 5 contains
information about segment descriptors that are required for all segments, including DCE
segments.

The additional information required to describe DCE segments is as follows:

• IDL for all interfaces shall be delivered in files of the form interface.idl in the
segment’s include directory, where interface is the name of the interface.

• DCE installation/deinstallation dcecp scripts shall be delivered in files named
dce_install.dcp and dce_deinstall.dcp in the segment SegDescrip
directory.

• Additional DCE-related configuration information is recorded in the DCEDescrip
segment descriptor. See subsection 8.3.4 below.



Runtime Environment

January 1997 DII COE I&RTS: Rev 3.08-10

SegDir

dce_install.dcp
dce_deinstall.dcp
DCEDescrip

dcecp

server1.dcp
server2.dcp
servern.dcp

Icons Menus fonts app_defaultskeytab

server1.tab
server2.tab
servern.tab

interface.idl

SegDescripInteglibincludemandatabinScripts

stubs.o

Figure 8-1: COE Directory Structure for DCE Segments

8.3.2 Cell Directory Service Structure

Figure 8-2 illustrates the CDS structure for a DII COE cell.3 The following description
summarizes the structure:

• Server configuration entries are included under
 

  /.:/hosts/hostname/config/srvrconf/servicename.
 
 These entries will be built by the segment DCE installation script.
 
• User principal DCE entries have the same name as the Unix userid. They are included

in CDS under /.:/sec/principal/username, but can be referenced in
security APIs using just the username.

 
• Server principal DCE entries have the name hosts/hostname/servicename.

These entries are referenced in CDS under
 /.:/sec/principal/hosts/hostname/servicename.

                                               
3 Although the CDS directory is described using notation that is similar to the Unix directory/file system,
the CDS is entirely independent from the Unix file system. The CDS structure includes containers that
correspond with Unix directories, and entries that correspond to leaf nodes or files.



Runtime Environment

DII COE I&RTS: Rev 3.0 January 1997 8-11

U
B

ce
lln

am
e

m
as

te
r

se
c

df
s

se
rv

er
1

se
rv

er
2

se
rv

er
n

ho
st

_n
am

e
ce

ll_
na

m
e

ce
ll_

al
ia

se
s

po
st

_p
ro

ce
ss

or
s

JO
PE

S
G

SO
R

T
S

E
M

U
B

JO
PE

S
G

SO
R

T
S

E
M

U
B

ap
pl

ic
at

io
n

D
B

A
dm

Sy
sA

dm

us
er

1
us

er
2

us
er

3

se
rv

er
1

se
rv

er
2

se
rv

er
n

ho
st

1
ho

st
2

ho
st

s

E
M

C
om

p

se
rv

er
1_

pr
of

ile
se

rv
er

2_
pr

of
ile

se
rv

er
3_

pr
of

ile

se
rv

er
1

se
rv

er
2

se
rv

er
1

se
rv

er
2

se
rv

er
3

ob
je

ct
s

ho
st

2
gr

ou
ps

ho
st

1

C
O

E
G

SO
R

T
S

JO
PE

S

dc
e

us
er

se
rv

er
W

at
ch

te
am

pr
in

ci
pa

l
pr

of
ile

gr
ou

p
or

g

h
su

bs
ys

se
c

fs
lo

ca
lh

os
tn

am
e_

C
H

kr
bt

gt
la

n_
pr

of
ile

se
rv

er
1

se
rv

er
2

se
rv

er
n

sr
vr

ex
ec

sr
vr

co
nf

ho
st

da
ta

xa
tt

rs
ch

em
a

cd
s_

se
rv

er
co

nf
ig

se
lf

au
di

t_
se

rv
er

ho
st

n
ho

st
2

ho
st

1

ce
ll_

pr
of

ile
ho

st
s

/

se
rv

er
1

se
rv

er
3

Figure 8-2: CDS Layout for the DII COE



Runtime Environment

January 1997 DII COE I&RTS: Rev 3.08-12

 
• Security groups and organizations also appear in CDS under /.:/sec. (Directories

/.:/sec/group and /.:/sec/org respectively.)
 
• All server binding entries are contained under /.:/h. There is one container for each

mission-application segment, named with the segment’s assigned directory, and one
container for the COE, with sub-containers for each COE segment.

 
• Each segment container contains a profile entry for each service offered by the

segment. This entry is named /.:/h/SegDir/servicename_profile and
serves as the starting point for all client binding searches.

 
• There will be a service binding entry for each server for each host on which the server

is installed. The entry has the form
 /.:/h/SegDir/hostname/servicename.

 The name of each entry matches the service name.
 
• A groups container under each segment is used to store any server group entries

used in the binding search path.
 
• An objects container under each segment is used to store any object entries used to

locate object resources used in binding searches.

8.3.3 Distributed File System

Note: The DFS global cell directory structure is still being designed.
COE developers who intend to use the global cell must contact
the DII COE Chief Engineer.

8.3.4 DCE-Related Segment Descriptors

Chapter 5 details the segment descriptor information required for DCE segments. A
synopsis of the information is presented here as an aid to locating DCE-relevant
information. Refer to Chapter 5 for detailed discussion.

• The $SERVICES keyword in the COEServices descriptor should not be necessary
for DCE applications, since endpoints are defined dynamically.

 
• The $SERVERS keyword within the Network segment descriptor shall not be used

for DCE services. Instead, use the $DCESERVERS keyword in the DCEDescrip
segment descriptor.

 
• The segment descriptor Permissions may be used, but it is preferable to

implement the application using DCE security services.



Runtime Environment

DII COE I&RTS: Rev 3.0 January 1997 8-13

 
• The DCEDescrip segment descriptor has options $DCEBOOT and $DCEDEMAND

for DCE servers started by dced.
 
• Include a $PASSWORDS keyword in the COEServices descriptor to establish a

Unix userid for each server principal.
 
• Document DFS files used with the $DFSFiles keyword in the DCEDescrip

descriptor.

This information is used to automatically configure, and verify, DCE CDS usage.

8.3.5 Server Issues

This subsection deals with issues involved in the design and implementation of DCE server
applications.

8.3.5.1 Naming

The following guidelines apply to the naming of servers, interfaces, CDS names, and
operations:

• The service name is the name that represents the logical service provided by a server.
In the non-DCE world, this name is put in the $SERVERS keyword. The purpose of
$SERVERS is so that a client does not have to reference the actual hostname of a
server. Examples are masterTrk, slaveTrk, masterComms. DCE servers are
not tied to a specific host and hence do not use the $SERVERS keyword (Network
segment descriptor). The $DCESERVERS keyword (DCEDescrip segment
descriptor) is used instead to list the services offered by this segment. The $SERVERS
and $DCESERVERS keywords are mutually exclusive.

 
• The following convention shall be used to assign service names: A segment offering a

single service shall use names of the form SegPrefix_server where SegPrefix is
the segment’s prefix. Segments offering multiple services shall use
SegPrefix_service where service is a meaningful name for the service. This
convention will be used in naming many DCE resources associated with a service and
will be represented in the text as servicename.

 
• Interface names also will be controlled to avoid duplication. The interface names shall

be descriptive of the function of the interface. Each interface shall include the segment
prefix. Examples are: MAP_location, MAP_access, and MAP_rdaclif for a
segment, whose segment prefix is MAP, offering three interfaces. Operation names
become the names of remote APIs and shall also begin with the interface prefix or a
subset of it (i.e., location_find, access_read, access_update).



Runtime Environment

January 1997 DII COE I&RTS: Rev 3.08-14

Operation names shall also be consistent with other COE requirements on naming of
APIs.

 
 DCE will automatically provide a management interface for server applications. The

only management operation that is controlled is shutdown, which can only be
performed by dced. If a server wants to restrict other management functions, the
server must deliberately disable them using the dced management routines:
dced_server_disable_if() and dced_server_enable_if(). Further
information on server management can be found in Chapter 8 of the OSF DCE
Application Development Guide--Introduction and Style Guide (Rev 1.1).

 
 DCE will also automatically add an interface for managing ACLs. The example

interface MAP_rdaclif mentioned earlier uses the ACL manager API, rdaclif.
The rdaclif interface consists of remote procedures called by acl_edit and
includes remote procedures to retrieve an ACL, replace an ACL, and test whether a
given client is allowed to perform a given operation.

 
• Names of services and interfaces need not be registered with DISA for approval.

Inclusion of the segment prefix ensures that names are unique.
 
The CDS directory is a naming system somewhat like a filesystem. It uses a similar
convention for naming its objects and directories. For example,

/.:/h/JOPES/JOPESdb_server

Servers typically use CDS for storing information about the location, interface numbers,
and objects (i.e., resources) which they offer. Use of CDS naming requires as much rigor
as does file system naming.
 
• Every DCE server segment shall be assigned a directory structure within CDS that

parallels its file system location (e.g., /.:/h/SegDir where SegDir is the segment’s
assigned directory). All CDS entries related to this segment are contained within this
directory.

In DCE, every DCE server runs under the identity of a DCE principal. Even servers
offering the same service but on different machines require a unique DCE identity in order
to provide reliable authentication and authorization. DCE principal names are directly tied
to the CDS so server principal names can be expressed as a global name or as a cell
relative name. The global name is considerably longer due to the need to unambiguously
specify a principal regardless of the cell from which it originates. Within a cell, the
principal can be named without including any cell identifiers because DCE will
automatically append the cell information during processing.
 
• The convention for a DII DCE server is to use the principal name

/.:/hosts/hostname/servicename. Each DCE principal contains



Runtime Environment

DII COE I&RTS: Rev 3.0 January 1997 8-15

information relating to a Unix account that contains its uid. If each principal of the
same service had a unique uid, control of server file system resources would be
difficult. Each server providing the same service will share a Unix uid by creating
principal aliases. This allows each server to have a unique account with its own
password, home directory, etc., but yet share the same DCE principal and Unix
account.

 
• There will also be a security group created for every DCE service. This group will

contain all the principals that represent the servers for this service. The purpose of this
group is to allow instances of a service on different machines to trust one another. The
name for this group will be identical to the servicename. Therefore a segment
containing multiple services will have multiple security groups. If an application
requires additional DCE groups, they will all be prefaced with the segment prefix.

8.3.5.2 Interface Definition

DCE application interfaces are defined using the DCE Interface Definition Language
(IDL) defined by OSF. All interfaces are identified with a globally unique identifier that
ensures that clients bind to a server offering the proper interface. IDL interfaces also allow
the identification of versions of an interface. The version numbering scheme allows clients
to bind to a server offering any compatible version. Assuming upward compatibility,
versioning allows servers to be upgraded independently of clients, and allows old clients to
continue to operate with new servers.

• DII-compliant applications shall make use of version numbers and shall provide
upward compatibility between versions.

8.3.5.3 Server Registration

Servers record information (bindings) in CDS that identify the interface resources and
server location so that DCE clients can find the server when a client requests its service.
DCE stores information in CDS structures in three types of records: profiles, groups, and
server entries. The record name within CDS that the client accesses can correspond to a
specific server, a group of servers, or a CDS profile.4 Servers within a group are
considered to be completely interchangeable, and are selected at random. Profiles allow
the selection of alternative servers based on priorities.

Registration of DCE services shall follow the following guidelines:

• The server registration information within CDS shall follow the structure shown in
Figure 8-2, which uses the mission-application segment GSORTS as an example. Each
segment shall have a directory under /.:/h corresponding to the Unix file system

                                               
4 The term CDS profile refers to a CDS entry used in locating alternative instances of a service. It has no
relationship to the term profile used elsewhere in the I&RTS to identify applications and resources
available to a class of users.



Runtime Environment

January 1997 DII COE I&RTS: Rev 3.08-16

directory for the segment (see Figure 8-1). For example, if SegDir is the segment’s
assigned directory, it will have a CDS entry of /.:/h/SegDir. (The segment’s
assigned directory, SegDir, is established when the segment is registered.) Note that
COE-component segments, in the Unix file system, are underneath /h/COE/Comp so
their corresponding CDS entry is /.:/h/COE/Comp/SegDir. Within the segment
directory, individual server instances will be registered under a directory for the host
on which the server is installed. The name of the server entry shall be the servicename.

• A profile entry shall be created for each service directly under the segment directory
using the name servicename_profile. A service can also use RPC groups to
collect a set of equivalent servers. Group entries shall be placed under
/.:/h/SegDir/groups. The segment developer shall use the profile entry as the
starting point for binding requests within a client application. This is the name that will
be addressed by clients seeking a server.

 
• The server entry directly under the segment directory will always be a CDS profile

entry. The name will have the form servicename_profile. In the simplest case,
the profile will contain a single entry, pointing to the server entry for the host on which
the server is actually installed. However, by making the client address a profile entry
even in this simple case, the server can be moved, or alternative servers implemented,
with no changes to the client.

For example, in Figure 8-2, the GSORTS segment contains three servers: server1,
server2, and server3. The server1 software is installed on host1 and host2,
server2 is installed only on host1, and server3 is installed only on host2. Each
server instance is registered in CDS, as shown above, during segment installation. The
CDS profile entry server1_profile will contain pointers to the two instances of
server1, with appropriate priorities depending on whether these are equivalent servers
or one is a prime and the other a backup. The server2_profile and
server3_profile entries will point to the respective server entries. Note, however,
that by simply installing a new instance of server2 and making the proper entries in
CDS, a client will be able to locate alternative instances of server2 with no application
software changes.

• Servers may implement a more complex arrangement of CDS profiles and groups
within this structure. A group directory will be created under the application’s
assigned directory as well as an objects directory. The naming of entries
underneath groups and objects is completely under the control of the developer,
within the structure above.

The DCE API supports the registration of servers at execution time by the servers.
However, to reduce the volume of changes, it is recommended that DII applications build
most of the structure in advance, lacking only the specific endpoint information. The
specific endpoint (i.e., TCP port) is supplied at runtime to the endpoint mapper and is not



Runtime Environment

DII COE I&RTS: Rev 3.0 January 1997 8-17

stored in CDS. Building the structure in advance also allows it to be constructed using
dcecp rather than the more complex C-language API. Installation scripts are discussed in
more detail below.

• DII-compliant applications shall register servers within CDS during segment
installation. The exception to this will be for tactical applications that are installed on
systems that are transient members of cells.

Note: This means that the CDS registration structure is not an indicator
that a server exists. The client needs to actually check to make
sure the server is alive.

• DII-compliant application servers shall use rpc_ep_register() on server startup
to register the endpoint with the endpoint mapper. This call is part of
server_intialize(), as discussed below.

The structure above is designed for the case where service is provided by servers within
the local cell. However, DCE has no restriction on the location of the server. A profile
entry may point to servers in a foreign cell. This allows a profile to be constructed such
that, for example, it would look for a server first in the local cell, then within a near-by
cell, and then anywhere. Profiles can also be used to establish preference for servers based
on other criteria as well, such as the performance of the server hardware, or to allow
clients to select servers with compatible data representations to reduce data conversion
overhead.

The following guidance is provided on the use of cross-cell profiles:

• The required approach for accessing cross-cell services is to have a profile in each cell
that references local profiles on remote cells. The starting profile has the same name of
the profile that is configured into all clients. That is,

/.:/h/SegDir/servicename_profile

The local profiles will be similar to the profile set up for a single-cell implementation,
and will point to all servers within the cell. The primary profile gives priority to servers
in the local cell before looking in a foreign cell. This is illustrated in Figure 8-3. The
local profile could also be a group if the local servers are equivalent. A profile is
required if one server is the master and one is a backup.



Runtime Environment

January 1997 DII COE I&RTS: Rev 3.08-18

   

   

/.:/h/GSORTS

Priorities

9

GSORTS_local_Profile

host1

GSORTS
entry

host2

GSORTS
entry

Priorities

9
5

GSORTS_Profile

Priorities

9
9

GSORTS_local_Profile

/.:/h/GSORTS

GSORTS
entry

Cell1

Cell2

Figure 8-3: Access to Servers in Local and Foreign Cells

8.3.5.4 Server Startup

DCE servers are normally started by means outside of DCE’s control after the DCE
environment is started. DCE 1.1 introduced a facility for managing the startup and
monitoring of DCE servers. This facility is provided by the dced daemon and facilitates
full secure and remote control. When used in conjunction with the Client binding
recommendations below, servers can be started only as needed, and can be restarted in
case of failure, and can even be started along with any prerequisite processes as needed.
The dced process runs as root and is the parent of all DCE servers. Using the
configuration information that it stores, it can start the server under any userid/group pair
in any directory. The $DCEBOOT and $DCEDEMAND keywords are used with the



Runtime Environment

DII COE I&RTS: Rev 3.0 January 1997 8-19

DCEDescrip segment descriptor to identify DCE servers started by dced at boot time
or on demand.

The server startup function dce_server_register() is provided in order to
simplify the development of servers. Unfortunately, not all DCE 1.1 vendors provide this
API. The function is included in the dce_server_initialize()API discussed
below.

8.3.5.5 Configuration

DCE servers contain a large number of configuration attributes that are often hard-coded
in the application. The coding of these attributes makes servers hard to change or move
and maintain. The dced daemon maintains an extensible server configuration database.
DCE servers use this database to obtain their configuration information. This database is
secure and is remotely manageable. When dced starts a server, it establishes an
environment for the server based on its configuration record and allows the server to read
additional initial information, similar to the windows .ini file.

Server configuration information is maintained in CDS under a name of the form

/.:/hosts/hostname/config/srvrconf/servicename.

For more information, refer to the DCE Administration Guide.

The configuration information which dced currently maintains is shown in Table 8-1.

The configuration information is easily extendible by teaching the dced about new
configuration attributes. Additional attributes can be defined for any DII application as
needed. Attributes will be assigned names depending upon their scope. Attributes that are
required as part of COE support shall be named:

/.:/hosts/hostname/config/xattrschema/COE_attributename.

Attributes that are specific to a server segment shall be named:

/.:/hosts/hostname/config/xattrschema/SegPref_attributename

where SegPref is the segment’s prefix.

In the case of COE-component segments, adding an attribute requires prior approval of
the DII COE Chief Engineer. For mission-application segments, approval is required of
the cognizant Chief Engineer.



Runtime Environment

January 1997 DII COE I&RTS: Rev 3.08-20

• Application developers are responsible for creating configuration entries as part of
their segment installation scripts (dce_install.dcp and dce_deinstall.dcp
shown in Figure 8-1) invoked at installation time.

Information Description
arguments command-line arguments required by the server
directory the home directory in which to start the new server
gid the group identity under which the server will run
keytabs a list of keytab object UUIDs where the server stores its keys.

Although a list is permitted, only the first one is used.
program the name of the server program to run
prerequisites a list of server configuration object UUIDs which must be

running
principals a list of server principal names under which the server runs.

Although a list is permitted, only the first one is used.
starton a list of modifiers for starting conditions (boot, explicit, failure)
uid the Unix uid under which the server will be started
uuid a uuid which is assigned to the server object
services the DCE information about the operation provided. The

following information is defined for each operation:
annotation string describing the service

binding(s) protocol sequences which
register the service

flags modifiers affecting the service’s
mapping {disabled}

ifname the interface name

interface the interface UUID

objects a list of object UUIDs associated
with the service

Table 8-1: dced Configuration Information

• If the application is started by dced, the DCE daemon will ensure that the appropriate
environment (e.g., Unix uid, gid, home directory, and calling parameters) is established
before starting the server. The server will use the dce_inq_server() API to
obtain its configuration record. There is no requirement for the server to use the
configuration information, except to retrieve any relevant extended attribute
information and pass it to the initialization routines. Servers not started by dced must
use the dced_object_read() API to obtain this information.



Runtime Environment

DII COE I&RTS: Rev 3.0 January 1997 8-21

8.3.5.6 Initialization

Every DCE server performs a set of functions in order to initialize. This includes
registering one or more groups and entries in CDS (if not already created), and creating
and registering endpoints with the endpoint mapper. In addition to these functions, a
secure server must establish its identity (login), refresh its login context, and periodically
change its password.

• Servers do not normally need to perform CDS registration or unregistration during
server startup or cleanup. This is not necessary because the DII COE environment is
rigorously defined and because a client does not use the presence of CDS information
as indication of server liveliness. Registration is normally performed as part of server
installation.

• Servers in a tactical environment may perform registration at cell configuration time,
or the first time a server initializes.

Without using a common server initialization API, a server normally performs anywhere
from six to thirty API calls. (See the O’Reilly DCE Security book for an example of the
API calls required for a secure server.) The sequence of calls is nearly identical for all
servers in a well-controlled environment like DII because the parameters are defined by
the configuration record.

Note: A common server_initialize() API is defined and
provided as part of the COE to perform these actions. This
routine initializes the server, including security, using the server’s
configuration information.

A server using a special initialization sequence (as defined above) can retrieve its
configuration information to perform initialization. Following this guidance will allow
servers to be started on demand and can be truly configuration-less.

One of the most critical initialization functions of a server is to register endpoints with the
endpoint mapper in dced. This too is easily accomplished with the server_initialize API.

8.3.5.7 Security

To write a secure DCE application, besides the application code, the application developer
needs to write client code that obtains the proper authentication and forwards it to the
server. Clients are usually authenticated by the inherited login context created after
dce_login. The COE provides a unitary login feature so that DCE login is performed
as part of user login. To use authenticated RPC, a client adds a single call to the API
rpc_binding_set_auth_info(). Clients that use automatic binding will need to
use the binding_callout option in the ACF file.



Runtime Environment

January 1997 DII COE I&RTS: Rev 3.08-22

Once the client has been authenticated, the server code gets the privileges of the calling
client and determines the level of authorization possessed by the calling client. This code is
called the reference monitor and it performs the authorization checks. The reference
monitor receives the client access request from the server, retrieves the ACL of the object
requested and checks the client’s authorization against the ACL. The DCE Security
Service supports two authorization protocols that can be used with authenticated RPC:
DCE authorization and name-based authorization. The DCE authorization protocol is
based in part on the POSIX file-protection model, but is extended with ACLs. An ACL is
a list of entries that specify a privilege attribute (such as group membership) and the
permissions that may be granted to principals who possess that attribute.

• To be DII-compliant, applications shall only use DCE authorization.

8.3.5.7.1 Authentication

Secure servers require DCE security accounts in order to participate in DCE
authentication. Each account consists of a principal, and membership in a single primary
group and organization. The name of the account is identical to its principal name. DCE
security names can be as simple as

comms_server

or hierarchical such as

hosts/hostname/mapserver.

• COE hosts shall use DCE principal names that align one for one with Unix operator
names for interactive users. This will allow the use of the integrated login application
supplied with DCE. Non-user principals associated with DII servers shall use
hosts/hostname/servicename.

The following DCE Security Service application program interfaces can be used to
perform login for a non-interactive principal:

sec_login_setup_identity()
sec_key_mgmt_get_key()
set_login_validate_identity()
sec_key_mgmt_free_key()
sec_login_certify_identity()
sec_login_set_context()

These functions will be performed automatically when using the API, provided by DCE,
dce_server_sec_begin().

Secure servers must store their passwords in files since they are not capable of normal
interactive login. These files are known as keytab files.



Runtime Environment

DII COE I&RTS: Rev 3.0 January 1997 8-23

• For the DII COE, each application segment shall use its own keytab file. Servers shall
use names that are of the form servicename.tab. Keytab files will be placed in
the directory /h/SegDir/data/keytab as shown in Figure 8-1. This directory
must have access permissions set so that only the server principal can read or write to
it.

Once a server establishes its login context, it is responsible for refreshing the context
before it expires and changing passwords before they can expire. The API for managing
password expiration is sec_key_mgmt_manage_key(). This function does not
return and requires a dedicated thread.

The APIs for login refresh are:

sec_login_get_expiration()
sec_login_refresh_identity()
sec_key_mgmt_get_key()
sec_login_validate_identity()
sec_key_mgmt_free_key()
sec_login_certify_identity()

8.3.5.7.2 Authenticated RPC

A client program calls rpc_binding_set_auth_info() to specify how an
authenticated RPC connection will be set up. There are three important parameters that
must be provided: authentication service, authorization service, and the protection level.
Developers should use the following settings for these parameters:

Authentication Service. The default for DCE applications is dce_private, which
uses private key authentication. No other parameters are valid for DII DCE.

Authorization Service. An application can specify three possible values for the
authorization service: dce, name, and none. The value ‘dce’ means to pass a
Privilege Attribute Certificate (PAC). This is the setting that shall be used for all
DII DCE segments.

Protection Level. DCE allows an application to specify just how much the data in
an RPC should be protected. These are: none, connect, call, packet, integrity,
privacy. Integrity provides an authenticated connection between parties and
ensures that messages have not been tampered with in transit. Privacy provides the
highest level of protection for the RPC by encrypting the data using DES.
Although the SIPRNET is encrypted using NES, the DES encrypting provides
additional protection from packet snooping within a site.

• DII-compliant applications shall specify at least integrity. The privacy level should be
used for particularly sensitive information.



Runtime Environment

January 1997 DII COE I&RTS: Rev 3.08-24

8.3.5.7.3 Authorization

Once the client has been authenticated, the server must make an authorization decision.
The reference monitor (RM) is the server code for retrieving the client’s PAC. The
information from the PAC will be used by the RM to make the authorization decision.
While each server can implement its own RM, DCE packages RM code in its library. The
intent is for all servers to use this same library code. This will insure that access decisions
are made correctly and uniformly.

The ACL is a key part of the Authorization facility. Applications must be capable of
establishing and managing ACLs. DCE provides a set of APIs for using ACL managers
(dce_acl_*).

8.3.5.7.4 Generic Security Service API (GSSAPI)

DCE provides a method for using DCE security without rewriting applications to use
DCE RPC. DCE contains extensions to the IETF RFC 1508 and 1509 Generic Security
Services API (GSSAPI) that will allow current applications to use DCE authentication and
authorization. GSSAPI DCE extensions can be easily identified since all base GSSAPI
entry points start with gss_ while DCE GSSAPI extensions start with the prefix
gssdce_. The most important DCE GSSAPI extension is the
gssdce_extract_cred_from_sec_context. This call returns the Extended
PAC (EPAC) which contains the security attributes of the original client and any
intermediate servers. The server uses the EPAC to make its authorization decisions. For
more information on the DCE Security Service and the GSSAPI, see the following:

1. The Security chapters of the OSF DCE Application Development Guide-Core
Components Volume and the OSF DCE Administration Guide-Core Components
Volume (DCE Security Service only).

 
2. The (3sec) reference pages of the OSF DCE Application Development Reference.
 
3. The (8sec and 5sec) reference pages of the OSF DCE Command Reference.
 
4. Chapter 8, DCE Security Programming, Wei Hu, O’Reilly & Associates, 1995.

Note: The DCE Security Service and GSSAPI do not currently make
use of Fortezza authentication or encryption. Integration of
Fortezza with DCE is under investigation.

8.3.5.8 Auditing

DCE provides an enhanced audit facility consisting of the audit daemon, the dcecp
control program, and the audit logging client library. An audit daemon exists on every
DCE system. Applications audit events by sending RPCs to the audit daemon on the local



Runtime Environment

DII COE I&RTS: Rev 3.0 January 1997 8-25

system. The audit daemons write the audit records to the audit log file, which stores all the
event records so that they can be reviewed later. The audit daemon also maintain event
filters. Event filters are data structures that determine what events should be logged. Event
filters are stored in memory and in files called event selection list (ESL) files. In order to
dynamically tailor the audit process, the audit daemon exports an interface that allows the
control program, dcecp, to change the event filters and expand the range of events that
should be audited.

The final process of the audit facility is the audit-logging client library. This allows an
application to send audit records to the audit daemon. When an application makes a call to
the library, the library checks to see if the event should be audited. If the event filters
determine it should not be audited, no RPC is sent to the audit daemon.

This represents a simplistic view of how auditing takes place in DCE. More complex
actions are actually taking place including the dynamic updating of event selection lists.
The most important point is that applications need only work with the audit-logging API
to audit events.

• DII DCE servers shall not audit to private audit files. The ‘central trail’ shall be used
for all auditing.

A complete list of the DCE Audit API routines can be found in the OSF DCE Application
Development Reference, Volume 2.

An event is any action that takes place and is associated with a code point in the
application server code. Each event has a symbolic name as well as a 32-bit number
assigned to it. Each event number is a tuple made up of a set-id and the event-id. The set-
id corresponds to a set of event numbers and is assigned by OSF to an organization. The
organization manages the issuance of the event ID numbers to generate an event number.
The structure and administration of event numbers can be likened to the structure and
administration of IP addresses.

The concept of events allows each DCE implementation to establish audit events for a
wide variety of actions that may take place within applications. DCE has established a
hierarchy of formats for events. Once again, these are similar to the class structure within
the administration of IP addresses. As part of the DCE implementation, DISA will request
the assignment of a Format B event number. Format B is designed to be used by
intermediate-sized organizations that need the 8 to 16 bits for the event-id. This will
provide for the greatest flexibility and growth. Events may also be logically grouped
together into an event class. This is a case where it may be more efficient to refer to
several events as a single entity/class. Event classes are assigned event class numbers by
the OSF. If required, event class number will be requested from the OSF.



Runtime Environment

January 1997 DII COE I&RTS: Rev 3.08-26

8.3.5.9 Threads

DCE automatically implements threads for server applications. The use of threads can be
beneficial to allow the server to service multiple clients concurrently. The number of active
threads can be controlled by max_calls_exec in rpc_server_listen(), which
can be set to zero if the server software is not “thread safe.”

While the use of threads is beneficial and recommended, the following cautions are
provided:

• It is well known that threads can conflict with Ada tasking. Use threads with caution
with Ada servers.

 
• Many COTS packages are also not “thread-safe.” Calls to databases, windowing

systems, and other routines should be done with caution from within a thread.
 
• Handling of fork/exec and signals is different when threads are used.

When using exceptions with threads, the application must explicitly include the
dce/pthread_exc.h header file.

8.3.5.10 Installation

In addition to installing software and data to system disk, server installation must also
establish entries in DCE CDS as discussed earlier.

• Application segment developers shall include dcecp installation/deinstall scripts in the
segment descriptor directory. The installation script will build the registration structure
in CDS for each interface as part of server installation. The scripts are named
dce_install.dcp and dce_deinstall.dcp. These scripts must contain
conditional statements to ensure that some of the entries, such as the SegDir container
under /.:/h, are only created once for each cell. These scripts are executed
automatically by the segment installer tool during segment install/removal.

• It is recommended that there be a separate servicename.dcp script for each
interface, to simplify configuration and maintenance of server installation procedures.
The primary dce_install.dcp script must invoke each of the individual service
scripts.

• DCE installation is normally performed by the root user logged in using the DCE
cell_admin identity. In order to reduce the exposure during installation, DCE
applications will be installed in a two-step process. During the first step, the minimal
set of secure operations is performed. These include:



Runtime Environment

DII COE I&RTS: Rev 3.0 January 1997 8-27

1. Creating a DCE account using the principal segments/SegDir.
 
2. Creating a CDS directory /.:/h/SegDir.
 
3. Setting the ACL for /.:/h/SegDir to permit all functions for the principal

segments/SegDir.
 
4. Creating a security group group/segments/SegDir.
 
5. Setting the ACL for the security directory hosts/hostname to allow the

segments/SegDir to create principals below it.
 
6. Allowing segments/SegDir to create one account for each service

implemented by the segment (object creation quota).

Note: This first installation step is available as a standard utility in the
DII COE. It is be parameterized based on a set of DCE-related
descriptors.

The second phase of DCE installation, is performed by the segment-provided scripts
(dce_install.dcp, etc.) and is run using the account segments/SegDir. It must
complete the installation process by performing the following for each service:

1. Create a DCE principal (once per cell), usually with the same name as the
hosts/hostname/servicename to be used by the server.

 
2. Create a binding profile for each service of the form
 

 /.:/h/SegDir/servicename_profile
 
 (once per cell) and add each server entry.
 
3. Create a server leaf entry (once per instance)

 /.:/h/SegDir/hostname/servername.
 
4. Create server configuration entries (for each instance).
 
5. Create default ACLs for any server defined objects.
 
6. Create security entries for the segment under application and group.

Note: The entire installation process is automated based on information
in the segment descriptor files.



Runtime Environment

January 1997 DII COE I&RTS: Rev 3.08-28

8.3.5.11 Server Exceptions

A DCE server must have proper cleanup code. Cleanup code is responsible for graceful
shutdown and includes unregistering with the runtime, removing the endpoint from the
endpoint mapper, and killing any security management threads.

• Servers wishing to honor a remote ‘stop’ request, must register an authorization
function using rpc_mgmt_set_authorization_fn(). This can be used to
control other management interfaces.

 
• Servers shall be prepared to catch signals and perform the necessary shutdown. This

can be performed by converting signals to thread cancellation and using a cleanup
function (pthread_cleanup_push) or using the exception facility to catch the
pthread_cancel_e condition.

comm_status, fault_status op(); /* in ACF file */
error_status_t op ( args ... ); /* in IDL file */

Alternatively, routines can return status by using the return code as follows:

op([comm_status, fault_status] st) /* in ACF file */

• All DII-compliant applications shall catch the SIGHUP and SIGTERM signals and
perform a graceful termination. By convention, SIGHUP means to terminate as soon
as practical, and SIGTERM means to terminate immediately.

Note: The initialization API is accompanied by a server termination
function so that every programmer does not need to write one.

8.3.5.12 Client-Side Libraries

When a server is being implemented as a reusable service, it is often desirable to develop a
client-side library of interface routines to isolate the client from the DCE interfaces. This is
the model most often used in commercial packages that provide a callable service. The
client deals only with a well-defined call-level interface, independent of the fact that
operations are performed by a server. This also allows some library procedures to be
performed entirely at the client when there is no need to interact with the server.

• COE services may provide an API library separate from the IDL when that will
improve the efficiency or usability of the software. When a library is provided, it shall
be delivered in the segment’s lib directory. Unless authorized by the DII COE Chief
Engineer, the library must be provided for all supported COE hardware platforms.



Runtime Environment

DII COE I&RTS: Rev 3.0 January 1997 8-29

8.3.6 Client Issues

This section provides guidance for client application developers to make use of DCE
servers to access DCE servers.

8.3.6.1 Binding

Binding is the term DCE uses to refer to a client locating an appropriate server prior to
performing an RPC. This is another area where a DCE application writer has plenty of
latitude. Binding encompasses issues such as selection of transport protocol, selecting one
or multiple servers based on load, location, or other criteria. Ideally, the binding will be
resilient and deal with server’s dying, stale entries in CDS or endpoint maps, automated
remote server startup, and meeting server prerequisites. DCE also supports three methods
for binding which impact the way applications are developed (automatic, explicit, implicit).

• It is recommended that applications use the explicit binding method since it is the most
flexible. In cases where preserving the API does not permit the use of automatic
binding for the client, this does not preclude server’s use of explicit binding. Servers
should always use explicit binding so they can obtain client identity and/or client
objects.

• One precaution using explicit binding is that the client is responsible for obtaining
another binding should the initial handle fail (i.e. the first server is unavailable). This
feature is provided automatically by the runtime when automatic_binding is
used.

• Automatic binding does not naturally allow for secure binding or for passing an object
reference for use in object binding. When using automatic binding, use the
binding_callout ACF attribute to annotate the binding for security or object
purposes. This will register a call-back routine, to be supplied by the client, that can fill
in security and object information. Refer to the OSF DCE Developers Guide - Core
Components.

Note: The DII COE provides a standard API that clients can use to
obtain a binding handle. This simplifies writing client applications
and permits the features described above to be implemented as
needed.

There are two different binding models available within DCE. In the service model, any
implementation of a service is assumed to be able to handle any request. This is
appropriate for general purpose services such as math routines. The alternative is the
resource or object model, in which servers also identify specific objects for which service
is provided. Clients then identify both a service and an object, and DCE will bind to a
server that satisfies both requirements. For example, an OPLAN database could identify
the OPLANs that it contains, or a map server could identify the maps it can provide. A



Runtime Environment

January 1997 DII COE I&RTS: Rev 3.08-30

client could then request “Connect me to a map server that has a map of Bosnia.”
Different objects could also be used to distinguish between test and “live” versions of a
database. The object model can also be used to identify a “role” being supported by a
server. For example, the client could request “Connect me to a server that is supporting
the ‘observer’ role.” The object model is a little more complex, but provides much greater
capability.

• DII COE client/server applications should use the resource model for binding. For the
simple case where there is currently no distinction among implementations, each server
should register an object corresponding to the server, and the clients should request
this object. This establishes the structure for greater flexibility later. It also establishes
an object-oriented flavor to interfaces that may ease transition to the use of object
request broker technology in the future.

• DII COE client applications need some means of learning these object UUIDs. There
are two choices: define the object UUID values in ‘header’ files, or use CDS as an
object catalog. Object entries in CDS shall be placed under the
/.:/h/SegDir/objects directory or under another subdirectory under
objects (i.e., objects/Maps). Groups can be used to collect these objects (for
example, groups/Maps may refer to object entries objects/Bosnia and
objects/Iraq).

8.3.6.2 Exceptions

Exceptions are a means of handling failure conditions which occur during program
execution. DCE implements exceptions locally and remotely as a result of an exception
occurring during execution on a server. Using exceptions requires the use of a potentially
new programming style. DCE uses exceptions internally as a means of conveying the
failure status of RPC communications-related failures. The default handling of an
exception is a program abort which is not desirable. The choices for an application
developer are as follows:

1. Use exceptions by including dce/pthread_exc.h and defining TRY/ENTRY
blocks around code that may raise an exception.

 
2. Attempt to avoid exceptions by using the comm_status and fault_status

attributes in an ACF file. To this end, new RPC operations should reserve use of the
last parameter in each RPC as a means of conveying error status by doing the
following:

 
void op ( args..., error_status_t *st); /* in IDL file */

• DII applications shall make provisions for handling exceptions using one or the other
of these methods. The latter method is recommended because of its language
independence, but either method is acceptable.



Runtime Environment

DII COE I&RTS: Rev 3.0 January 1997 8-31

8.3.6.3 Security

In DCE, the client is responsible for selecting the security protocol and level, whereas the
server maintains the choice of accepting the client’s request or rejecting it. The API
rpc_binding_set_auth_info() is used to specify the client selections. The
default protection level is rpc_c_protect_level_default. The default
authentication service is rpc_c_authn_default. The default authorization service is
rpc_c_authz_dce.

• DII COE clients shall use the DCE authorization protocol along with packet integrity.
Applications requiring additional security should justify and identify those
requirements appropriately.

In order for a client to initiate a secure transaction with a server, the client must know the
server’s principal name. This information along with the security level is placed in the
binding handle. In the absence of a standard binding interface, the client can obtain the
server’s principal name using rpc_mgmt_inq_server_princ_name or can query
the configuration record on the host whose binding was obtained from CDS.

Note: The latter is performed automatically by the COE supplied
binding API.

8.3.6.4 Auditing

There is no difference between auditing in a client and in a server. However, auditing is
almost always performed in a server rather than in a client. Auditing can be performed by
non-DCE applications, but the user or application must perform a DCE login in order to
obtain DCE identification information that is inserted in the audit records. See
subsection 8.3.5.8 for a discussion of auditing.

8.3.6.5 Threads

While threads are not automatically enabled for DCE clients, the DCE pthreads package is
available for use by DCE clients. The cautions mentioned under server issues apply to
clients. Client application developers should read more about the implications before using
threads, particularly with Ada applications. Vendor release notes should be consulted
when using threads. Vendors may require the use of special compile flags such as
-D_REENTRANT or _THREAD_SAFE_ and may need to be linked with vendor-specific
libraries.

8.3.7 Miscellaneous Information and Requirements

This final subsection provides some remaining details for properly using DCE within the
context of the DII COE.



Runtime Environment

January 1997 DII COE I&RTS: Rev 3.08-32

• The COE establishes the CELL environment variable to contain the current cell name.
 
• Unix userid shall agree one-for-one with DCE principals.
 
• Each Unix group used with a DCE application shall have a matching DCE group, but

not all DCE groups must have a matching Unix group.
 
• Account groups do not have a useful analog in DCE, although organizations or groups

could fill this function.
 
• Unix file permissions are similar to DCE ACLs, although ACLs are much more

flexible.



Distributed File System

DII COE I&RTS: Rev 3.0 January 1997 8-33

8.4 Distributed File System

DFS offers some unique characteristics as a remote file service product. Some of these
capabilities are often replicated by individual applications. Using DFS can provide
significant benefits to applications that need to provide coherent file access to a very large
community. Using DFS, all sites have access to a single logical file space. In GCCS 3.0
this access is provided by a NFS-to-DFS gateway machine located at each of the GCCS
sites. DFS also provides a built-in replication mechanism that can be used to provide rapid
file access and high availability. It is fully integrated within DCE and uses secure DCE-
RPC as well as DCE’s fine-grained access control mechanisms.

Note: This section uses GCCS as an example and the guidance given is
specific to the GCCS global cell. However it is also of interest to
other DII developers since the techniques applied to GCCS could
also be implemented for other areas.

The DFS provides a transparent, secure global file system. DFS has enormous potential
for sharing files within and among sites. DFS will be installed within a global cell that has
machines at four sites world-wide (DISA, TRANSCOM, EUCOM, and PACOM). This
cell will provide secure, global visibility to current information using automatic replication.
All GCCS sites will share files by access to a file server within this cell. Initially, DFS will
be used for a limited number of files, but the usage will grow as experience is gained.

DFS provides the following features:

1. Client-side caching: DFS is implemented as a “stateful” file service. Servers are
knowledgeable about clients, files in use, and network copies. This allows clients to
maintain full disk-based copies of server files to achieve near local disk performance.
This is accomplished using a token passing scheme. The NFS-to-DFS gateway
machines will be configured with large disk caches (dedicated storage) for caching of
remote files. The probability of finding cached data within each site, or at least within
the theater, will be high and the dependency on the network is similarly reduced.

 
2. Transparency (POSIX semantics): DFS supports nearly complete POSIX semantics

for file system access. This guarantees consistency of file access to non-replicated files
across all DFS clients. For files that are not replicated, DFS will ensure that any file
changes are immediately visible to other users of the file. Other systems with stateless
implementations have far weaker semantics due to the possibility of having multiple
copies in client buffers.

 
3. Replication: DFS divides file systems into smaller hierarchies called filesets. DFS can

create replicated read-only filesets of a given master writeable copy. Replication
provides load balancing and additional availability. A flexible scheme exists for keeping
the master and read-only copies in synchronization within selectable time intervals. All
accesses to the writeable fileset see any changes immediately, while accesses to a read-



Distributed File System

January 1997 DII COE I&RTS: Rev 3.08-34

only replica see the change after some delay, usually about 30 minutes. These
consistency controls allow a trade-off between performance and coherency. In general,
replication is only used for files that change infrequently.

 
 Note that “immediately visible” is from the perspective of the NFS-to-DFS gateway.

Because clients access the gateway using NFS, the NFS consistency semantics apply,
and updates may not be immediately seen by the clients.

 
4. Backup filesets (cloning): DFS provides the ability to create a backup of a fileset, and

to make this backup available online as a read-only copy. The backup is accomplished
using an efficient system of file pointers, so that only files changed after the backup
take up additional space in the file system. The use of backup can allow users to
recover overwritten or deleted files without administrative help, without doubling file
space requirements.

 
5. Use of DCE security: DFS uses DCE security to provide authenticated access and

ACLs for granular access. DFS ACLs are based on DCE ACLs, but implement a
specific security model that is much more flexible than Unix file permission bits. ACLs
can specify the access privileges afforded to specific users, any local user, users in
specific named security groups, users from a specific cell, users from any external cell,
any authenticated user, and non-authenticated users.

 
6. Initial ACLs: In addition to specifying ACLs for files and directories, DCE also allows

a separate set of “Initial ACLs” to be attached to a directory. These specify the ACLs
that will be applied to any new file created within the directory. In addition, “Initial
Container ACLs” can be specified to identify the ACLs for any new directories.
Among other things, these can be used to allow users to create new files and
directories without allowing them to subvert the ACLs on the directory (e.g., granting
public access to files in a sensitive directory).

 
7. Delegation: DFS also supports delegation of DCE credentials, which can be used to

protect not only who can access a file, but also specify the means of access. For
example, ACLs can permit user john to access the GEOLOC file through the
GEOLOC server but prevent john from accessing the file without using the server,
and can prevent another user from accessing the file even if they use the GEOLOC
server.

 
8. Administration: DFS supports advanced administrative functions such as hot backup,

moving live filesets between machines, quota controls, transactional file system,
dynamic re-sizing of file systems and the ability to control groups of files in filesets
rather than in file system units.

 
9. Location independence/consistency of naming: All DFS files are accessed by

consistent names that do not contain any location information. For GCCS, a file could
be in any of the global cell file servers, or replicated in multiple servers. Although



Distributed File System

DII COE I&RTS: Rev 3.0 January 1997 8-35

GCCS will use a single DFS cell, in general DFS uses CDS to access file systems that
can easily span cell boundaries. Every client system has the same file system view
regardless of the cell to which they belong.

 
10. Wide-area access: DFS is built on top of DCE RPC that can use TCP, UDP or other

protocols. Because of its efficiency, circuits of 56Kbps are adequate to provide wide-
area access to DFS servers.

8.4.1 DFS Structure

In general, the DFS file system is a hierarchical structure starting at the /... CDS
directory. Files in any cell can be addressed just by referencing the DFS filename. The
structure of a DFS filename is /.../cellname/fs/filesystem. An example of a
system’s DFS directory is /.../gccs.smil.mil/fs/usr/JOPES. The logical
naming of files does not require that the files reside in a specific server. The physical
representation may have files in another location or perhaps replicated across several file
servers. As a convenience, a symbolic link /:/ is made to represent the files within the
current cell.

Note: In GCCS 3.0, it is anticipated that there will only be a single
global cell containing the DFS file space.

One of the primary purposes of DFS is controlled sharing of information. In the C3I
environment, information sharing occurs in at least three different dimensions: within an
organizational structure (e.g., across a single service or agency); within the unified
command structure (e.g., among a CINC, JTF, and supporting commands); and within
functional groups (e.g., among operations watchteams at all sites). All of these can be
done using DCE security groups. Group ACLs may be attached to any file within a file
structure, but it is most easily understood and administered if the sharing requirements are
explicit in the structure. For the GCCS DFS, the file system is organized around these
sharing dimensions.

8.4.2 DFS Guidance

DFS should be used for files that meet one of more of the following criteria:

1. Files that are read-mostly (i.e., are read many more times than they are written).
2. Files that require high availability.

• For files that change frequently, there is a tradeoff between currency and the overhead
of replication. Changes to non-replicated files are visible immediately, while changes to
a replicated file may not be visible for a period of time. The replication update rate can
be set by fileset, but a long interval between replication can increase the chances of
accessing a stale copy.



Distributed File System

January 1997 DII COE I&RTS: Rev 3.08-36

• Files that are site-specific must be placed in site-specific directories in DFS. Be
cautious when mapping an application data directory into a shared data directory if the
application has any hard-coded file names. It is possible for one site to write the file
and unintentionally change the values for all sites.

 
• For GCCS, DFS files will initially be mapped into the local NFS file system on

/GCCS. All client machines will mount /... from the NFS-to-DFS gateway
machine. /GCCS will be a symbolic link to /.../gccs.mil/fs.

 
• If application-specific directories are used in DFS, the segment installation procedures

shall create the directories. Note that the full directory names are site-specific.
 
• Use symbolic links to map DFS files or directories into the proper place in the local file

system. All mapping shall be done at a directory level. System developers are also
responsible for constructing symbolic links from the local file system to the global DFS
in their installation procedures.

 
• Do not create a symbolic link from /.:/gccs.smil.mil/fs/ to /:/, and do

not use the notation /:/ within DFS references. This notation refers to the DFS
within the current cell. Since all GCCS applications operate outside the global cell, this
would create an ambiguous reference if the site implements DFS internally in the
future.

 
• Do not place RDBMS databases into DFS. The DFS file consistency and caching

methods do not support the level of sharing required by and RDBMS. It is possible to
back up databases into DFS for re-loading somewhere else.

 
• GCCS application servers, or even clients, may become DFS clients and access the

global cell directly. Bypassing the NFS-to-DFS gateway may result in better
performance due to local caching and better consistency semantics through avoiding
NFS.

8.4.3 Potential Uses for DFS

Global DFS cells can be used in a variety of ways to assist operators and developers,
including the following:

1. Data distribution: Many sites are using ftp as a means of obtaining remote files. The
transparency of NFS or DFS is much more powerful than ftp. NFS is not well suited
for wide-area access and has serious security issues when used across sites. The
originator can simply write the data into DFS using any software, and the user can
immediately read it using the appropriate application. If the originator changes the file,
the other users can almost immediately see the change.

 



Distributed File System

DII COE I&RTS: Rev 3.0 January 1997 8-37

2. Reference files: Applications frequently use reference files for maintaining information
such as maps, inventory, or flat-file databases. These files are updated by a few sites
and are made available to other sites using primitive distribution techniques. DFS also
has the ability to use ‘cloning’ whereby a virtual copy of a file is kept, but with a
fraction of the storage costs. Using this feature, the global file system could make
available old and new copies trivially.

 
3. Secure files: Files containing security sensitive information should not be kept in NFS

file systems. DFS is a secure alternative to NFS. Using DFS, files can be distributed
and controlled at whatever degree is necessary.

 
4. Mobile Personnel: Operators who travel regularly to remote sites are probably using

non-secure means (i.e., telnet) to access files such as e-mail, data files (phone lists)
or documents. Both telnet and ftp can provide access control, but in both cases
the user's password is sent unencrpyted across the network. DCE provides more
flexible security and the password is never exposed on the network. By storing these
files in DFS, they can be securely accessed remotely.

 
5. DCE configuration information: Information about site configuration such as its DCE

configuration can easily be stored in DFS. Cell backups (critical DCE databases and
configuration files) can be done remotely by writing into a global file system.



Migration Recommendations

January 1997 DII COE I&RTS: Rev 3.08-38

8.5 Migration Recommendations

Applications must be programmed to use DCE before the application can fully benefit
from the power of DCE. It is assumed that the movement to DCE among applications will
be gradual. Although not all applications will be re-engineered to use DCE RPCs
immediately, they can still take advantage of other DCE services using techniques
described in this section.

The next subsections describe four scenarios and identify ways in which DCE services can
be used in each case. The example cases are not mutually exclusive in that an application
may take advantage of several of them. The first two cases are specifically targeted at
legacy applications, while the last two may be used by legacy or newly developed
distributed applications.

8.5.1 Case1: Application Startup

A typical application startup scenario in the DII starts with the client workstation
displaying a user desktop. The user selects an icon or menu entry, which causes a “button
script” to be executed to start a DII application. The application may be local or remote.
The desktop ensures that the user is authorized to select the icon or menu item. In the case
of an application on a remote application server, the script uses a Unix command such as
rsh or rexec to start the remote server. The server application then opens a window on
the client workstation and begins a dialog with the user.

The rsh command requires a level of mutual trust between the application server and the
client. It is possible for a malicious client to masquerade as an authorized user and run an
application for which they are not authorized. This is particularly a problem for legacy
applications that run under a distinguished uid, such as JOPES (i.e., not the user’s id). Use
of a simple DCE wrapper can ensure the user is authorized using strong DCE protection.

Through the use of a transparent DCE wrapper, the startup of DII applications can be
fully protected using strong DCE authentication and access controls. Instead of invoking a
user application, a button-script will invoke the wrapper and pass the name of the user
application and any parameters. The wrapper will verify that the user is authorized to use
the application, then launch the application. The application receives control just as if the
script had launched it directly, so no application changes are required. In addition to
performing authentication, the wrapper can audit execution of applications.

The wrapper can be used to launch applications on the client machine or on a remote
machine. In the case of a remote application, the wrapper will operate much like the Unix
rexec or rsh, but will use authenticated DCE RPC to communicate to a remote
wrapper server and will use the DCE ACL model. The remote wrapper will authenticate
the user, verify that the user is authorized, then set up the application environment before
launching the application. Unlike rexec or rsh, the button script does not need to
specify the machine that contains the application. By proper use of the CDS binding



Migration Recommendations

DII COE I&RTS: Rev 3.0 January 1997 8-39

information, the wrapper can make a request such as “connect me to a wrapper server on
a machine that has the JOPES application.”

The wrapper approach has the advantage of allowing full security over execution of DII
applications without having to make changes to any applications.

• This temporary approach is permissible only as an interim step for legacy applications
as they migrate to DCE. New distributed applications shall be designed as two and
three-tier client/server applications making use of RPC. New COE-component
segments shall not use this approach without prior approval of the DII COE Chief
Engineer. Mission-application developers shall not use this approach without prior
approval from the cognizant Chief Engineer.

8.5.2 Case 2: Socket/ONC RPC

Some applications are distributed and use sockets or unsecured ONC RPC to exchange
control and data. Some socket applications perform highly sensitive operations, but
essentially accept any request presented to the designated endpoint. Even without
converting to full DCE RPC, these applications can make use of strong DCE
authentication and access control. Socket-based communication is also susceptible to
packet insertion attacks.

Existing applications that use sockets or RPC and desire greater security should seriously
consider migrating to use of DCE RPC. In many cases the effort to convert to
authenticated DCE RPC is not great. However, even if only limited application changes
can be made, the use of DCE security is possible using the new GSSAPI. With the
GSSAPI, the client application obtains a user credential, which is passed to the server
application. The server verifies the user credential through another call to the GSSAPI.

The simplest use of the GSSAPI will get the credential once and pass it only in the first
message. This provides some measure of security, but not as much as passing the
credential in every interchange. However the latter requires more widespread changes to
the application. It also requires the application to periodically refresh the credential before
it expires.

The following sequence of calls illustrates the use of GSSAPI:

1. Client calls gss_init_sec_context to obtain a security token to pass to the
server.

 
2. Client passes token to the server across the revised socket or RPC.
 
3. Server receives token and calls gss_accept_sec_context to decode the token,

then gets a copy of the session key.



Migration Recommendations

January 1997 DII COE I&RTS: Rev 3.08-40

If the credential is valid, the server can convert the token (session key) to a DCE
client/server, which is used as the subject in the access control decision; otherwise, it
rejects the request. The use of GSSAPI is discussed further in subsection 8.3.5.7, Security.

• This temporary approach is permissible only as an interim step for legacy applications
as they migrate to DCE. New COE-component segments shall not use this approach
without prior approval of the DII COE Chief Engineer. Mission-application developers
shall not use this approach without prior approval from the cognizant Chief Engineer.

8.5.3 Case 3: Distributed Databases

Perhaps the greatest potential use of distributed computing in the DII is for distributed
databases, using products such as Oracle SQL*NET. This provides some security, but
requires duplicate identification of people and resources, increasing administration. It is
possible to integrate database security and remote access control with DCE security using
COTS.

At least two COTS alternatives have potential for providing DCE security to remote
database connections currently using Oracle SQL*NET. The first is to use the SQL*NET
DCE product as provided by Oracle. This product provides an Oracle integration of CDS
and Security into existing applications and servers. The Oracle database uses the client’s
DCE credentials for access decisions, alleviating the need for a separate Oracle login. The
product also maps DCE groups to database roles, unifying another aspect of security. The
ability to map a DCE security group membership into an Oracle role will not be available
until the next release. Database servers register in CDS and clients use CDS to locate a
database server. Unfortunately, this product is not currently available for all COE
platforms.

A second approach is to use Open Horizon’s Connection product as a means of
integrating existing Oracle database clients and servers. It uses essentially the same
approach as SQL*NET DCE, and product availability is immediate. It supports
applications using OCI. In addition, this product supports the de facto standard ODBC
remote database connection protocol, allowing access to a large number of other
databases and products. Its major disadvantage is that it cannot provide DCE group to
Oracle role mapping. It requires that privileged database access be granted to the
Connection server. It cannot currently be used with applications that use ProC or ProAda
embedded SQL, since these use undocumented interfaces, instead of standard OCI.

Note: There are no facilities to directly support either approach in the
DII COE. Tools such as Connection are under consideration for
later COE releases. Developers may make use of these tools with
the COE if required. This subsection is provided only to describe
a potential migration approach.



Migration Recommendations

DII COE I&RTS: Rev 3.0 January 1997 8-41

8.5.4 Case 4: Distributed Files

Perhaps the easiest way to use the security features of DCE is through use of DFS. For
example, the GCCS Global DFS will allow the use of DCE access control, authentication,
replication, and consistency controls, with little or no application impact. It reduces
requirements for user-initiated FTP and polling.

DFS offers some unique characteristics as a remote file service product. Some of these
capabilities are often replicated by individual applications. Using DFS would be a
significant benefit to applications that need to provide coherent file access to a very large
community. DFS also provides a built-in replication mechanism that can be used for
software distribution. It is fully integrated within DCE and uses secure DCE-RPC as well
as DCE’s fine-grained access control mechanisms. GCCS will use DFS to allow all GCCS
sites to have access to a single logical file space. In later versions of GCCS, this access is
provided by a NFS-to-DFS gateway machine located in each of the theaters.

The DFS provides a transparent, secure global file system. DFS has enormous potential
for sharing files within and between sites. DFS will be installed to support GCCS within a
global cell that has machines at four sites world-wide (DISA, TRANSCOM, EUCOM,
and PACOM). This cell will provide secure, global visibility to current information using
automatic replication. All GCCS sites will share files by access to a file server within this
cell. Initially, DFS will be used for a limited number of files, but the usage will grow as
experience is gained.

• Developers planning to use DFS or anticipating a need for DFS for COE-component
segments shall contact the DII COE Chief Engineer for more detailed information and
guidance. Mission-application developers shall contact the cognizant Chief Engineer to
ensure that such usage does not interfere with the COE, or with other COE-based
systems.



Migration Recommendations

January 1997 DII COE I&RTS: Rev 3.08-42

This page is intentionally blank.


